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Abstract

Background: Aberrant b-catenin signaling plays a key role in several cancer types, notably colon, liver and breast cancer.
However approaches to modulate b-catenin activity for therapeutic purposes have proven elusive to date.

Methodology: To uncover genetic dependencies in breast cancer cells that harbor active b-catenin signaling, we performed
RNAi-based loss-of-function screens in breast cancer cell lines in which we had characterized b-catenin activity. Here we
identify CSNK1E, the gene encoding casein kinase 1 epsilon (CK1e) as required specifically for the proliferation of breast
cancer cells with activated b-catenin and confirm its role as a positive regulator of b-catenin-driven transcription.
Furthermore, we demonstrate that breast cancer cells that harbor activated b-catenin activity exhibit enhanced sensitivity to
pharmacological blockade of Wnt/b-catenin signaling. We also find that expression of CK1e is able to promote oncogenic
transformation of human cells in a b-catenin-dependent manner.

Conclusions/Significance: These studies identify CK1e as a critical contributor to activated b-catenin signaling in cancer and
suggest it may provide a potential therapeutic target for cancers that harbor active b-catenin. More generally, these
observations delineate an approach that can be used to identify druggable synthetic lethal interactions with signaling
pathways that are frequently activated in cancer but are difficult to target with the currently available small molecule
inhibitors.
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Introduction

The Wnt/b-catenin pathway plays a critical role in embryonic

development, maintenance of multipotent progenitor cell populations

and proliferation of many tissue types [1,2]. In the absence of Wnt

ligands, a complex containing APC, AXIN and GSK3 phosphory-

lates b-catenin, marking it as a substrate for ubiquitination by b-TrCP

and subsequent proteasomal degradation. Canonical Wnt/b-catenin

signaling is initiated by binding of Wnt ligands to Frizzled (Fzd)-

LRP5/6 receptor complexes, leading to inactivation of the

destruction complex and stabilization of b-catenin. Once stabilized,

b-catenin accumulates and translocates to the nucleus, where it

complexes with TCF/LEF to activate transcription of target genes,

such as MYC and CCND1. In addition to ligand-regulated

degradation of b-catenin, Wnt signaling is antagonized by extracel-

lular factors that inhibit the ability of Wnt ligands to bind to Fzd and

initiate signaling, such as the secreted frizzled-related proteins

(SFRP1, WNT inhibitory factor (WIF) and dickkopf (DKK) [3].

Loss-of-function mutations in APC or AXIN or activating mutations

in the gene encoding b-catenin, CTNNB1, lead to aberrant activation

of Wnt/b-catenin signaling and have been causally linked to

tumorigenesis of the colon, liver and skin [1,4]. Although mutations

in these same genes have not been observed as recurrent genetic events

in breast tumors, there is strong evidence implicating Wnt/b-catenin

activity in breast tumorigenesis. Wnt1 was originally discovered as an

oncogene activated by mouse mammary tumor virus (MMTV) [5],

and mice engineered to express either Wnt1 or an activated form of b-

catenin from the MMTV-LTR develop mammary hyperplasia and
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adenocarcinoma [6]. Moreover, human breast tumors frequently

exhibit elevated levels of nuclear b-catenin, with higher expression

levels correlating with decreased patient survival [7]. The mechanism

of b-catenin activation in breast tumors appears to involve the

downregulation of Wnt inhibitors, such as SFRP, WIF or DKK,

leading to constitutive activation of autocrine Wnt signaling [8]. In the

case of the SFRP genes and WIF1, this downregulation often occurs

through methylation-induced epigenetic silencing [9,10], and both

SFRP1 and DKK have been shown to be transcriptionally repressed by

MYC, a well-established breast oncogene [11]. However, it remains

unclear whether inactivation of these inhibitors fully explains the

observed frequency of b-catenin activation in breast cancers.

Given the potentially important role of Wnt/b-catenin signaling

in breast tumorigenesis, we sought to identify potential therapeutic

targets, by identifying genes that promote the survival of breast

cancer cells with active b-catenin. By using an RNAi-mediated

loss-of-function screening approach, we have identified CSNK1E, a

member of the casein kinase family, as an essential regulator of b-

catenin activity and proliferation in breast cancer cell lines.

Results

Characterization of b-Catenin Activity and Dependency
in Breast Cancer Cell Lines

We initially characterized the activation status of b-catenin in

breast cancer cell lines using an antibody that specifically

recognizes the unphosphorylated form of b-catenin, which

corresponds to the stable and thus functionally active form [8].

Three of the lines tested, MCF7, MDA-MB-231 and T47D were

found to have elevated levels of both active and total b-catenin

compared with the MDA-MB-453 cell line, which had much

lower levels (Fig. 1A). In addition to determining levels of the

active form of b-catenin, we also assessed b-catenin activity status

by measuring nuclear b-catenin levels, which corresponds to the

transcriptionally active pool of b-catenin, and is physically and

functionally separate from the other major cellular pool of b-

catenin at adherens junctions. We observed elevated levels of

nuclear b-catenin in MCF7, MDA-MB-231 and T47D cells, with

barely detectable levels in the MDA-MB-453 cells. (Fig. 1B).

Methylation and subsequent downregulation of expression of the

Wnt-inhibitory gene SFRP1 has previously been observed in all

three b-catenin-expressing lines [12] and may contribute to

activation of Wnt/b-catenin signaling in these cells.

We next determined the functional importance of b-catenin in

these cells. When we suppressed CTNNB1, with two distinct short

hairpin RNAs (shRNAs) in the three cell lines with active b-

catenin, we observed a substantial reduction in cell proliferation

(Fig. 1C, D). In contrast, suppression of b-catenin in MDA-MB-

453 cells failed to alter proliferation (Fig. 1C, D). Taken together,

these observations suggest that some breast cancer cells exhibit

aberrant activation of b-catenin and further, that these cells are

dependent on continued b-catenin function for proliferation.

Figure 1. Characterization of Wnt/b-catenin activity in breast cancer cell lines. Immunoblot analysis of (A) active (upper panel) and total
(middle panel) b-catenin levels or (B) cytoplasmic (left) and nuclear (right) b-catenin levels. To verify fractionation, immunoblots for cytoplasmic
GAPDH and nuclear lamin are shown. (C) Immunoblot analysis of b-catenin levels after suppression of CTNNB1 with two distinct shRNAs (shBCAT A, B)
in b-catenin active (MCF7) and b-catenin inactive (MDA-MB-453) cells. An shRNA against GFP was included as a control (shGFP). Asterisk denotes
position of a non-specific cross-reacting band. (D) Effects on proliferation after RNAi-induced suppression of CTNNB1. Graph shows mean 6 SD of a
representative experiment performed in triplicate.
doi:10.1371/journal.pone.0008979.g001

CK1e and Breast Cancer

PLoS ONE | www.plosone.org 2 February 2010 | Volume 5 | Issue 2 | e8979



Loss-of-Function Screens Identify CSNK1E as an Essential
Regulator of b-Catenin

After characterizing b-catenin activity, we performed high-

throughput screening of the MCF7, MDA-MB-231, T47D and

MDA-MB-453 breast cancer cell lines using a kinase-rich subset of

the lentiviral shRNA library generated by the RNAi Consortium

(http://www.broad.mit.edu/genome_bio/trc/rnai.html) to identi-

fy genes specifically required for proliferation of cells that harbor

active b-catenin. We chose to focus on kinases as they regulate

many key physiological processes and have the potential to rapidly

translate to therapeutic targets thanks to the existence of readily

available inhibitors. Raw luminescence scores derived from the

proliferation/viability assay were normalized to plate medians and

corrected for variability due to spatial and batch effects to generate

B scores [13]. Replicates were averaged to generate a cumulative

B score for each shRNA (Table S1). As the shRNA library

provides redundant coverage of targeted genes, with approxi-

mately five shRNAs against each gene, we defined essential genes

as those for which multiple shRNAs induced a reduction in

proliferation, with at least two shRNAs with a B score below -1.

Using this approach, we identified twelve genes, STK6 (AURKA),

AURKB, CDK8, CSNK1E, DCK, KDR, FOXO4 (MLLT7), PRKACA,

PRKCA, STK16, TK1 and VRK1 that were required for

proliferation in the three cell lines that showed active b-catenin

but not in the cell line with no evidence of b-catenin activation

(Fig. 2A).

Based on our observations that b-catenin itself is required for

proliferation in cells with active b-catenin, we hypothesized that

some of these genes may affect proliferation through regulation of

b-catenin activity. To pursue this possibility, we integrated the

results of our proliferation screen with the results of a parallel

screen performed using the same shRNA library to identify

modulators of b-catenin transcriptional activity [14]. By compar-

ing the results of these two screens, we found three genes to be

essential for both proliferation and b-catenin activity, FOXO4,

CDK8 and CSNK1E (Fig. 2A). We recently characterized CDK8 as

a colorectal oncogene that functions as part of the Mediator

complex to modulate b-catenin-driven transcription. Here, we

focused on CSNK1E, a member of the casein kinase family that has

been implicated in the regulation of circadian periodicity [15], as

well as Wnt/b-catenin signaling [16,17]. Interestingly, suppression

of CSNK1D, which is highly homologous to and has overlapping

function with CSNK1E [18], did not affect proliferation of b-

catenin positive cancer cell lines, suggesting a specific role for

CSNK1E, at least in the context of these breast cancer cells (Table

S1).

Figure 2. CSNK1E is an essential gene in breast cancer cells with active b-catenin. (A) Schematic overview of RNAi screens and integrative
analysis to identify essential regulators of b-catenin activity and cancer cell proliferation. (B) Immunoblot analysis of CK1e levels after RNAi-induced
suppression. (C) Effects of CSNK1E suppression with two shRNA sequences (A and B) on proliferation. Graph shows mean 6 SD of a representative
experiment performed in triplicate.
doi:10.1371/journal.pone.0008979.g002
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We validated the ability of the shRNAs to reduce CK1e levels

and confirmed that two shRNA sequences that scored in the

primary screens hits reduced the expression of CK1e in each of the

four cell lines screened (Fig. 2B). Importantly, these shRNAs only

affected proliferation in the three cell lines that showed high b-

catenin activity, recapitulating the phenotypes from the primary

screen (Fig. 2C) and the ability of the individual shRNAs to affect

proliferation correlated directly with their ability to reduce CK1e
levels (Fig. 2B, C).

As the initial RNAi screens were limited to three b-catenin-

positive lines and one b-catenin-negative line, we tested the

hypothesis that CSNK1E is preferentially required in additional b-

catenin-positive cells by determining the effects of its suppression

in an expanded panel of breast cancer cell lines. We assessed these

cell lines for levels of unphosphorylated, active b-catenin (Fig. 3A),

levels of nuclear b-catenin (Fig. 3B), and dependency on b-catenin

(Fig. 3C) and identified four additional breast cancer cells with

evidence of b-catenin activity (BT474, BT549, DU4475 and

HS578T) and one additional b-catenin-negative line (SKBR3).

These cell lines exhibited varying degrees of sensitivity to

suppression of CTNNB1, with the b-catenin-negative line, SKBR3,

being the least sensitive (Fig. 3C). Of particular interest, the

DU4475 cell line has been reported to harbor a homozygous

nonsense mutation in the APC gene [19], leading to the increased

levels of active and total b-catenin observed (Fig. 3A, B). These cell

lines were then tested for their response to the loss of CSNK1E

function. We observed that suppression of CSNK1E led to reduced

proliferation in three of the b-catenin-positive lines, HS578T,

BT474, and BT549 but did not significantly affect the b-catenin-

negative line, SKBR3 (Fig. 3D, E). Interestingly, the APC-mutated

Figure 3. Validation of CSNK1E as an essential gene in additional b-catenin-activated breast cancer cells. (A) Immunoblot analysis of
active (upper panel) and total (middle panel) b-catenin levels in five additional breast cancer cell lines, BT474, BT549, DU4475, HS578T, and SKBR3. (B)
Immunoblot analysis of cytoplasmic (left) or nuclear (right) b-catenin levels. Immunoblots for cytoplasmic GAPDH and nuclear lamin were performed
to verify fractionation. Effects of (C) CTNNB1 or (D) CSNK1E suppression on proliferation. Graph shows mean 6 SD of a representative experiment
performed in triplicate. (E) Immunoblot analysis of CK1e levels after RNAi-induced suppression.
doi:10.1371/journal.pone.0008979.g003
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DU4475 cells, while exhibiting evidence of b-catenin activation

and sensitivity to CTNNB1 suppression, were relatively unaffected

by CSNK1E suppression (Fig. 3D, E), suggesting that CSNK1E may

function upstream of APC in Wnt/b-catenin signaling.

Small Molecule Inhibition of CK1e
To evaluate the role of CSNK1E as an essential gene in b-

catenin-positive cell lines using a second independent approach,

we used IC261, a specific inhibitor of CK1e. Upon treatment

with IC261, we observed a reduction in proliferation in b-

catenin-positive MCF7 cells, with an IC50 of 0.5 uM, which

closely parallels the reported IC50 for the inhibition of CK1e by

IC261 (1 uM) (Fig. 4A, Table 1) [20,21,22]. In contrast, the b-

catenin-negative MDA-MB-453 cell line responds to IC261

with an IC50 of 86 uM, more than 100-fold less sensitive than

the MCF7 cell line (Fig. 4, Table 1). We also performed IC261

dose response curves in the BT474, BT549, HS578T and

SKBR3 cell lines and again found that the b-catenin positive

cells responded at low micromolar doses to IC261 while the b-
catenin negative line required 10- to 100-fold higher doses of

IC261 to inhibit proliferation (Table 1). We also found that non-

tumorigenic human mammary epithelial cells immortalized

with hTERT (HMEC-hTERT) respond to IC261 similarly to

the b-catenin-negative lines, with an IC50 of 46 uM (Table 1).

In agreement with these results, we also observed that a second

CK1e inhibitor, PF-670462 [23], preferentially inhibits prolif-

eration of b-catenin-positive MCF7 cells as compared to b-

catenin-negative MDA-MB-453 cells, with IC50 values of 6 uM

versus 33 uM, respectively (Fig. 4B). Together, these observa-

tions suggest that pharmacological inhibition of CK1e prefer-

entially affects the proliferation of breast cancer cells with

aberrant b-catenin activity, compared to both immortalized

mammary epithelial cells and breast cancer cells without b-

catenin activity.

Loss of CSNK1E Function Abrogates b-Catenin Activity
To validate the observation from the b-catenin reporter screen,

that CSNK1E is required for b-catenin activity, we used the same

two CSNK1E-specific shRNA sequences that we tested above in an

independent b-catenin reporter assay and observed that suppres-

sion of CSNK1E reduces b-catenin transcriptional activity by more

than two-fold (Fig. 5A). This reduction was similar to the effects

seen with either b-catenin suppression or expression of a

dominant-negative TCF (Fig. 5A). Furthermore, we found that

treatment with the CK1e inhibitor IC261 at 1 or 2 uM reduces b-

catenin transcriptional activity by approximately two-fold in

MCF7 cells, supporting the hypothesis that IC261 reduces viability

at least in part through inhibition of Wnt/b-catenin signaling

(Fig. 5A).

To gain insight into the mechanism by which CK1e regulates b-

catenin-driven transcription, we determined the effects of CSNK1E

suppression on b-catenin levels. We observed a reduction in the

levels of nuclear and cytoplasmic b-catenin upon loss of CSNK1E

expression, suggesting that CK1e regulates b-catenin stability

(Fig. 5B).

To further investigate CSNK1E function in an unbiased fashion,

we performed microarray-based transcript profiling on MCF7

cells in which CSNK1E expression had been suppressed with

RNAi. Among the genes downregulated upon CSNK1E suppres-

sion were many canonical b-catenin target genes, including MYC,

CD44, BIRC5, PPARD, and TCF1 (data not shown). From these

expression profiles, we used Genepattern [24] to identify

comparative markers that distinguish cells transduced with

CSNK1E-specific shRNA from cells transduced with GFP-specific

Figure 4. Small molecule inhibition of CK1e specifically affects
breast cancer cells with b-catenin activity. (A) IC261 dose response
curves of b-catenin active cells (MCF7) and b-catenin inactive cells
(MDA-MB-453). (B) PF-670462 dose response curves of b-catenin active
cells (MCF7) and b-catenin inactive cells (MDA-MB-453). Graphs
show mean 6 SD of a representative experiments performed in
triplicate.
doi:10.1371/journal.pone.0008979.g004

Table 1. IC50 values for growth inhibitory effect of IC261 in
breast cancer cell lines.

Cell line IC261 IC50 b-catenin

MCF7 0.5 uM +

MDA-MB-453 86 uM -

BT474 6.9 uM +

BT549 0.9 uM +

HS578T 0.2 uM +

SKBR3 43 uM -

HMEC-hTERT 46 uM NA

IC50 values for each cell line were calculated from a representative experiment
performed in triplicate using Graphpad Prism. b-catenin status is indicated in
right column.
doi:10.1371/journal.pone.0008979.t001
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shRNA to generate a molecular signature of CSNK1E suppression.

We then used this signature to query the Connectivity MAP

(CMAP) database of expression signatures generated from cells

treated with chemical compounds [25] and identified two

compounds that induced similar expression profile signatures,

with multiple instances scoring highly in the comparative analysis,

the nonsteroidal anti-inflammatory drug (NSAID) oxaprozin and

resveratrol (Fig. S1).

Figure 5. Loss of CSNK1E function abrogates Wnt/b-catenin signaling. (A) Effect of RNAi suppression of CSNK1E on b-catenin transcriptional
reporter activity. 293T cells were cotransfected with a b-catenin expression construct, pRL-SV40, the indicated shRNA construct and the b-catenin-
responsive pTOPFLASH reporter constructs. Parallel transfections with pFOPFLASH reporter constructs were performed to normalize for b-catenin-
specific activity. CTNNB1 shRNAs and dominant-negative TCF (DN-TCF) were included for comparison. Graph shows mean 6 SD of a representative
experiment performed in triplicate. Right panel shows effect of IC261 on b-catenin transcriptional reporter activity. MCF7 cells transfected with pRL-
SV40, and either the b-catenin-responsive pTOPFLASH reporter or the control pFOPFLASH reporter, were treated with the indicated concentrations of
IC261 for 48 hours. Graph shows mean 6 SD of a representative experiment performed in triplicate. (B) Immunoblot analysis of cytoplasmic (left) and
nuclear (right) b-catenin levels in MCF7 cells 72 hrs post transduction with shRNA against CSNK1E. Immunoblots for cytoplasmic GAPDH and nuclear
lamin were performed to verify fractionation. (C) Effect of oxaprozin on b-catenin transcriptional activity after 48 hrs. (D) Differential effects of
oxaprozin on relative cell number of b-catenin active cells (MCF7) versus b-catenin inactive cells (MDA-MB-453).
doi:10.1371/journal.pone.0008979.g005
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We tested the effects of oxaprozin on b-catenin reporter activity

and observed a dose-dependent decrease in activity beginning with

300 uM, the concentration isolated as a match to the signature of

MCF7 cells treated with CSNK1E-specific RNAi (Fig. 5C). Similar

to our observations with CSNK1E suppression by RNAi, oxaprozin

inhibited the proliferation of the b-catenin-positive cells line,

MCF7 (Fig. 5D). The target of oxaprozin in this instance is likely

to be COX-1, as MCF7 cells express little or no COX-2 [26] and

COX-2 selective inhibitors failed to score as a match to CSNK1E

suppression in the CMAP analysis. In contrast to MCF7 cells, the

MDA-MB-453 cells, which show low levels of b-catenin, are

resistant to oxaprozin, consistent with the idea that loss of b-

catenin activity underlies the response to oxaprozin (Fig. 5D).

The other compound identified in the CMAP analysis,

resveratrol, was recently shown to activate SIRT1, which

promotes the deacetylation of b-catenin, ultimately leading to

inhibition of transcription [27]. However, in this case, we observe

that resveratrol affects the proliferation of both b-catenin positive

and negative cells similarly, likely reflecting its ability to impact

many cellular processes (Fig. S1B). Notwithstanding the pleiotro-

pic effects of resveratrol on proliferation, our ability to match

CSNK1E suppression with two compounds that subsequently

proved to be inhibitors of b-catenin activity further supports the

hypothesis that CSNK1E functions in breast cancer cells to

promote b-catenin signaling.

CSNK1E Promotes Oncogenic Transformation
Aberrant activation of b-catenin through dysregulation of

components in the Wnt signaling pathway is known to promote

tumorigenesis. Having determined that CSNK1E regulates Wnt/b-

catenin signaling, as well as proliferation of b-catenin-positive breast

cancer cells, we next determined whether CSNK1E is potentially

involved in promoting b-catenin-dependent oncogenic transforma-

tion in breast cancer. In prior work, we established human embryonic

kidney epithelial cells engineered to express hTERT, the SV40 Early

Region and an activated allele of MEK as a model system for

demonstrating transformation activity of oncogenes, including AKT1

and IKBKE [28]. Using this experimental system, we had observed

that expression of myristoylated CK1e transforms these cells, as

assessed by anchorage-independent growth in vitro. Here, we

confirmed that expression of myristoylated CK1e induces cell

transformation in multiple cell types including human embryonic

kidney and human mammary epithelial cells expressing hTERT, the

SV40 Early Region, and constitutively active MEK (Fig. 6A), as well

as in NIH 3T3 mouse fibroblasts (data not shown). Expression of

myristoylated CK1e is also able to support tumor formation in vivo, as

assessed by growth of xenografts in an immunodeficient mouse model

(Fig. 6A). Interestingly, expression of non-myristoylated CK1e was

unable to promote either anchorage-independent growth or tumor

formation in vivo (Fig. 6A), consistent with the possibility that

membrane localization is required to induce activation of CK1e, in a

manner similar to other ectopically expressed signaling molecules,

such as AKT, RAF or PI3-kinase [29,30,31] (Fig. 6A).

To determine whether b-catenin activity is essential for the

ability of CSNK1E to transform human cells, we characterized the

effect of loss of b-catenin function in cells transformed by

expression of myristoylated CK1e. We observed that suppression

of CTNNB1 strongly inhibited the ability of CSNK1E to promote

anchorage-independent growth in vitro (Fig. 6B). In contrast, the

anchorage-independent growth of cells transformed by AKT is not

significantly affected by suppression of b-catenin (Fig. 6B).

Moreover, cells transformed by CSNK1E demonstrated an

enhanced sensitivity to b-catenin suppression compared to control

cells, suggesting that the CSNK1E-transformed cells develop a

dependence on b-catenin function for proliferation (Fig. 6C). To

determine whether b-catenin activity may be sufficient to mediate

the ability of CSNK1E to promote transformation, we replaced

CSNK1E in the mammary epithelial cell transformation assay with

the b-catenin S33Y mutant [32] and found that constitutive

activation of b-catenin functionally substitutes for CSNK1E in this

context (Fig. 6D). Taken together, these data suggest that CSNK1E

is not only required for cancer cell proliferation and transforma-

tion in the context of activated b-catenin, but can also promote

transformation, potentially through activation of the Wnt/b-

catenin signaling pathway.

Discussion

Utilizing complementary unbiased functional genomics ap-

proaches, we have identified CSNK1E as a gene essential for Wnt/

b-catenin signaling and survival in a subset of breast cancers that

exhibit aberrant b-catenin activity. The role of CSNK1E in the

regulation of b-catenin activity was corroborated by the

identification of compounds that inhibit b-catenin signaling as

capable of inducing expression profiles similar to CSNK1E

suppression by RNAi. Moreover, expression of an activated form

of CK1e converts immortalized human cells to tumorigenicity, in

a b-catenin-dependent manner.

The majority of breast tumors exhibit evidence of activation of

canonical Wnt/b-catenin signaling and alterations predicted to

upregulate Wnt/b-catenin signaling have been reported, including

epigenetic silencing of Wnt antagonists SFRP1 and WIF1 and

upregulation of Wnt ligands and Fzd receptors [7,8,33]. These

events would promote the establishment of an autocrine Wnt

signaling loop that may lead to dependence on continued signaling

for viability, resulting in sensitization of these cells to loss of CSNK1E

function. Our observations suggest that in this context, CSNK1E

behaves as a synthetic lethal gene to aberrant activation of b-catenin.

Prior reports indicate that CK1e can phosphorylate and thereby

regulate multiple targets in the Wnt signaling cascade, including

Dvl, LRP6, APC, Axin and b-catenin [17]. We observed that

membrane targeting of CK1e is required for it to support

anchorage-independent growth and that the APC-mutated line

DU4475 is relatively resistant to CSNK1E suppression, implicating

a role for CSNK1E upstream of APC. Here, our findings support a

membrane-proximal function for CK1e, upstream of the degra-

dation complex, consistent with the hypothesis that the relevant

target may be membrane-associated, such as Dvl and/or LRP6.

Of potential therapeutic importance, we have demonstrated

that cancer cells with aberrant b-catenin activity exhibit greatly

increased sensitivity to CK1e inhibition, mediated either by RNAi

or by use of small molecule inhibitors of CK1e (Figs. 2, 3). The

finding that both suppression of CK1e expression and inhibition of

CK1e kinase activity led to apoptosis in cell lines dependent on b-

catenin make it highly likely that the observed phenotype is due to

specific effects on CK1e rather than an off-target effect. Moreover,

the ability to potentially inhibit CK1e using available inhibitors

would facilitate downregulation of Wnt/b-catenin signaling in

human tumors, which has proven challenging to target pharma-

cologically. Interestingly, previous reports have also suggested that

pharmacological inhibition of CK1e can induce apoptosis in

MEFs, which is enhanced by loss of p53, suggesting a potential

role for p53 in regulating apoptosis upon CK1e suppression [21].

CSNK1E was also identified as an essential gene in cancer cell

lines from multiple tumor types in addition to breast, including

colon, prostate, and brain (data not shown), as well as other cancer

cell lines in previously published reports [34,35]. Of particular

interest, Yang et al provide evidence to suggest that CSNK1E is a

CK1e and Breast Cancer
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cancer-specific essential gene and further postulate that this may

be due to its role in regulation of Per1/2 degradation and

circadian cycling [35]. In contrast, we have not observed changes

in Per1 levels in breast cancer cells upon CSNK1E suppression, and

we failed to detect effects on cell viability after Per1 overexpression

(data not shown). Given the many functions attributed to CK1e, it

seems likely that CK1e is an important regulator of several

pathways and its function may be dependent on cell context.

However, despite the potentially varying mechanisms in different

tumor types, these observations further support the view that

inhibition of CK1e may be broadly applicable as a therapeutic

strategy for cancer.

In addition to the identification of CSNK1E as a novel cancer-

relevant gene, these observations demonstrate the power of

integrating complementary unbiased functional genomic ap-

proaches to identify genes involved in specific cancer pathways.

As high-throughput screening technology becomes increasingly

available, systematic integration of the resulting phenotypic

annotation datasets will likely prove to be of great use in rapidly

pinpointing genes that may provide new avenues for targeting

essential cancer pathways.

Materials and Methods

Cell Culture and Reagents
Cells were cultured in DMEM (MCF7, MDA-MB-231, MDA-

MB-453, T47D, HS578T and 293T), RPMI (BT474, BT549 and

DU4475) or McCoy’s (SKBR3) medium with 10% inactivated

Figure 6. CK1e expression promotes oncogenic transformation. Anchorage-independent growth of (A) human mammary epithelial or
human kidney epithelial cells expressing hTERT, SV40 Early Region, and activated MEK (HMEL-MEKDD or HA1E-MEKDD) with the indicated expression
constructs. Colony numbers were normalized to the control and graphs show mean 6 SD of a representative experiment performed in triplicate.
Immunoblotting with a CK1e antibody to confirm expression is shown in middle panel. Lower panel shows tumor formation of HA1E-MEKDD cells
expressing myristoylated CK1e. (B) b-catenin is required for anchorage-independent growth of HA1E-MEKDD cells expressing myristoylated CK1e.
Colony numbers were normalized to the GFP control and graph shows mean 6 SD of a representative experiment performed in triplicate.
Representative images from each condition are shown in lower panel. (C) Differential effect of CTNNB1 suppression on the proliferation of HA1E-
MEKDD cells expressing CK1e versus GFP control. P values calculated for shBCAT A and shBCAT B for MF-CK1e-expressing cells are 0.034 and 0.038
respectively. P values for shBCAT A and shBCAT B for MF-GFP-expressing cells are 0.33 and 0.10 respectively. (D) Expression of constitutive active S33Y
b-catenin mutant can substitute for myristyolated-CK1e in promoting anchorage-independent growth in human mammary epithelial cells expressing
hTERT, SV40 Early Region and activated MEK.
doi:10.1371/journal.pone.0008979.g006
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fetal bovine serum. All established breast cancer cell lines are

commercially available from ATCC. Human mammary epithelial

cells were cultured in DMEM/F12 with 10 ng/ml EGF, 10 ug/ml

insulin and 0.5 ug/ml hydrocortisone [28]. Human epithelial

kidney cells were cultured in MEM with 10% inactivated fetal

bovine serum [28]. NIH 3T3 cells were cultured in DMEM with

10% calf serum. Antibodies were purchased for active b-catenin

(Millipore), b-catenin, GAPDH, and lamin (Cell Signaling

Technologies), CK1e (BD Transduction Laboratories), Ras and

tubulin (Santa Cruz Biotechnology). IC261 was purchased from

Merck; oxaprozin and PF-670462 were purchased from Sigma;

and resveratrol was a generous gift from David Sinclair.

Lentiviral RNAi Screens
Cells plated in 384-well microtiter plates were infected with

lentiviral shRNA constructs generated by the RNAi Consortium

(TRC) as described [36]. Screens were performed in duplicate both in

the presence and absence of puromycin to assess infection efficiency.

Assays were performed 6 days post infection using Cell Titer Glo

(Promega) and raw luminescence scores were converted to B-scores

[13]. Software to implement the B-score and various quality and

consistency checks were implemented using the R statistical package

(www.R-project.org) and BioConductor [37]. The b-catenin tran-

scriptional reporter screen was performed as described [14].

Cellular Fractionation and Immunoblotting
Cells were fractionated using the Qproteome Cell Compart-

ment kit from Qiagen, according to manufacturer’s instructions.

For knockdown validation of shRNA constructs by immunoblot-

ting, cells were infected in 6 well plates and lysates were harvested

in RIPA buffer containing protease and phosphatase inhibitors

three days post-infection.

Cell Proliferation and Oncogenic Transformation Assays
Cells were plated in 96 well microtiter plates and 24 hours later,

infected with shRNA lentiviruses in triplicate, followed by Cell

Titer Glo assay (Promega) six days post infection. The TRC IDs

corresponding to the shRNA sequences used for theses experi-

ments include: TRCN0000009965 and TRCN0000001834

(against CSNK1E), TRCN0000003843 and TRCN0000003845

(against CTNNB1), TRCP0000008679 (against GFP). For drug

response experiments, cells were plated and 24 hours later, treated

with the indicated drug concentrations in triplicate for 72 hours.

Drug dose response curves were fitted and IC50 values calculated

using a non-linear regression model in Graphpad Prism.

Retroviral infections, anchorage-independence assays and xeno-

graft assays were performed as described [28]. The pBP-HA-b-

catenin S33Y construct has been described previously [38].

b-Catenin Reporter Assays
Cells were transfected with either the b-catenin-responsive

pTOPFLASH or the control pFOPFLASH firefly luciferase

reporter construct [14], along with pRL-SV40 expressing renilla

luciferase used as transfection control (Promega) and other shRNA

or expression constructs as indicated. Where indicated, drug was

added 24 hours post transfection. 48 or 72 hours later, plates were

assayed using the Dual-Glo kit (Promega).

Microarray Analysis
RNA was harvested from MCF7 cells infected 48 hours prior

with lentiviruses harboring shRNAs against either CSNK1E or GFP

and submitted to the Dana-Farber Cancer Institute Microarray

Core Facility for mRNA expression profiling using Affymetrix

U133A2.0. Each infection was performed in triplicate. Raw data

were processed and comparative markers distinguishing the two

classes were identified using Genepattern software [24]. The top

100 overexpressed genes in and the top 100 underexpressed genes

CSNK1E-suppressed cells were selected to generate a CSNK1E loss-

of-function expression signature, which was then used to query the

CMAP database (http://www.broad.mit.edu/cmap/).

Supporting Information

Figure S1 (A) Connectivity Map analysis identifies oxaprozin

and resveratrol as compounds that cause transcriptional responses

similar to CSNK1E suppression in MCF7 cells, with multiple

instances scoring highly. The black lines indicate the ranking of the

instances for oxaprozin and resveratrol, with the green area

indicating samples with positive connectivity and the red area

indicating samples with negative connectivity. (B) Effects of

resveratrol on relative cell number of MCF7 versus MDA-MB-

453 cells.

Found at: doi:10.1371/journal.pone.0008979.s001 (0.39 MB TIF)

Table S1 Primary screen B scores for MCF7, MDA-MB-231,

MDA-MB-453 AND T47D cell lines. B-scores for all shRNAs

tested in the cell viability/proliferation for each of the cell lines

screened. All shRNA constructs are listed by their TRC identifier

under ‘‘clone ID’’. Asterisks denote wells that were removed for

technical reasons.

Found at: doi:10.1371/journal.pone.0008979.s002 (0.74 MB

XLS)
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