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Summary

It has become well accepted that solid tumors must create a vascular system for nutrient delivery and waste removal
in order to grow appreciably. This process, angiogenesis, is critical to the progression of gliomas, with vascular
changes accompanying the advancement of these tumors. The cascade of events in this process of blood vessel
formation involves a complex interplay between tumor cells, endothelial cells, and their surrounding basement
membranes in which enzymatic degradation of surrounding ground substance and subsequent endothelial cell migra-
tion, proliferation, and tube formation occurs. It is likely that a host of growth factors is responsible for mediating
these key events. To date, a role for Vascular Endothelial Growth Factor (VEGF) in glioma angiogenesis has been
convincingly demonstrated. This review explores the contribution of other growth factors—Fibroblast Growth Fac-
tors (FGFs), Platelet-Derived Growth Factor (PDGF), Epidermal Growth Factor (EGF), and Transforming Growth
Factors (TGFs)—to glioma angiogenesis. These growth factors may influence glioma angiogenesis by directly stim-
ulating endothelial cell proliferation, by mediating the expression of key proteases on endothelial cells necessary
for angiogenesis, or by regulating the expression of VEGF and of each other.

Introduction

Angiogenesis, the formation of new blood vessels
from pre-existing ones, is a central component in
the development, progression, and metastasis of a
number of human tumors including gliomas [1,2].
Gliomas appear to obey the central tenet of angio-
genesis: that to grow rapidly beyond 1–2 mm3, they
must create a system of blood vessels for nutrient
delivery and waste removal [3]. Consistent with this
observation, vascular changes accompany the malig-
nant progression of gliomas and are included in the
criteria used for glioma grading [4–8]. Noted vas-
cular alterations include endothelial cell proliferation
and loss of vessel structural integrity [9,10]. More-
over, neovascularization is correlated with biological
aggressiveness, degree of malignancy, and clinical
recurrence of gliomas and is inversely correlated with
postoperative survival of patients [7,11].

Angiogenesis in gliomas is both similar and distinct
from neovascularization in extracranial solid tumors.

Gliomas require neovascularization for growth and
continued progression, as do extracranial solid tumors.
However, additional consequences of the recruitment
of structurally compromised vessels to the glioma
tumor bed – namely, ischemic steal from hyperemia,
peritumoral edema, and increased likelihood of spon-
taneous hemorrhage – are of great concern in an
organ of exquisite oxygen-dependence and sensitivity
to increased intracranial pressure [12–14]. Hence the
particular context of oxygen and pressure sensitivity
in which glioma angiogenesis takes place compounds
the morbidity of the tumor growth and invasion fueled
by new blood vessel growth. A thorough understand-
ing of angiogenesis in gliomas is thus necessary for
therapeutic targeting of this process.

During angiogenesis, new blood vessels grow by
sprouting from established blood vessels; this pro-
cess is characterized by a cascade of events including
enzymatic degradation of basement membrane and
endothelial cell migration, proliferation, and tube
formation [15]. Vascular endothelial growth factor
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(VEGF) appears to be the most potent of the myr-
iad angiogenic growth factors described to date. (It is
discussed in a separate chapter.) Identical to vascular
permeability factor (VPF), tumor- or endothelial-
derived VEGF exerts its effects in an autocrine or
paracrine manner in gliomas through binding to high
affinity tyrosine kinase receptors KDR/Flk-1 and Flt-1
on endothelial cells [16,17]. A precise role for the neu-
ropilins, the most recent addition to the VEGF receptor
family [18], has yet to be described in glioma angio-
genesis. In addition to stimulating normal and tumor
angiogenesis and vasculogenesis, VEGF also induces
blood vessel permeability and protein extravasation;
hence it is responsible for both new blood vessel for-
mation and for the accompanying vasogenic edema
observed in tumor angiogenesis [19–21].

The role of VEGF in glioma angiogenesis has been
convincingly demonstrated [22], and while it may be
the principal angiogenic factor in this process, a number
of other growth factors like Fibroblast Growth Fac-
tor (FGF), Platelet-Derived Growth Factor (PDGF),
Epidermal Growth Factor (EGF), and the Transform-
ing Growth Factors-α and -β (TGF-α and -β) and
their corresponding receptors may also play roles in
regulating and modifying tumor angiogenesis in malig-
nant gliomas. These tumor-secreted growth factors
have both direct and indirect effects on glioma angio-
genesis: they can directly stimulate endothelial cell
proliferation, mediate the expression of key proteases
on endothelial cells necessary for angiogenesis, and
regulate the expression of VEGF and of each other.
They can act in a paracrine fashion, in which ligand
is produced by cells distinct from the cells expressing
receptor, or they may act in an autocrine manner in
which the same cell type expresses ligand and recep-
tor. In this review, we will discuss FGFs, PDGF, EGF,
and TGF-α and -β in turn, highlighting the basic
properties of these growth factors and their cognate
receptors, their expression in gliomas, and their roles
in angiogenesis in these tumors.

FGF

Ligand and receptor

The FGF growth factor family now comprises 19
polypeptides: FGF-1 (acidic FGF) [23], FGF-2 (basic
FGF) [24,25], FGF-3 (int-2) [26], FGF-4 (hst-l/kaposi-
FGF) [27,28], FGF-5 [29], FGF-6 (hst-2) [30], FGF-7

(keratinocyte growth factor) [31], FGF-8 (androgen
induced growth factor) [32], FGF-9 (glia-activating
factor) [32] and FGFs 10 and 12-19 [34–42] which
as new members still have incompletely characterized
biological functions. The FGFs are involved in a wide
range of biological activities and have been shown to be
involved in mitogenesis, differentiation, chemotaxis,
and angiogenesis; as such they have been implicated
in the development of skeletal, nervous, and vascular
systems, tissue integrity and repair, and wound heal-
ing, as well as a host of pathophysiologic processes
[43,44]. Here, we will focus on those FGFs that have
been reported to have roles in glioma angiogenesis:
FGF-1 and FGF-2. Additionally, a potential role for
FGF-4 in this process will also be discussed.

Of the 19 proteins in the FGF family, FGF-1 and
FGF-2 have been studied in greatest depth. Both have
been shown to be potent inducers of endothelial cell
migration, proliferation, and tube formationin vitro and
are highly angiogenic in a number of tissuesin vivo
[43,45]. FGF-1, or acidic FGF (aFGF), is encoded on
chromosome 5q [23] and is a 154-amino acid pro-
tein (with N-terminal truncation forms of 140 and 134
amino acids) with a molecular mass of 18 kDa [43,46]
(Table 1). FGF-2, encoded on chromosome 4q [47,48],
is expressed in 4 forms of varying molecular masses:
18, 22, 22.5, and 24 kDa [48,49]. The 18 kDa form has
55% sequence homology to aFGF [46]. An intriguing
structural feature of FGF-1 and FGF-2 is the absence of
a classical hydrophobic signal sequence for secretion
despite their extracellular activities. That these proteins
may be secreted during inhibition of classical secre-
tory routes suggests that secretion occurs through an
unconventional non-ER/Golgi pathway [51,52]. The
molecular weights and chromosomal locations of all
growth factors and receptors discussed in this review
are listed in Table 1.

While the targets of these factors are many, each
exerts its effects through one or more members of
four well-characterized FGF receptor families: FGF
receptor-1 (flg) [53], FGF receptor-2 (bek) [54],
FGF receptor-3 (FGFR-3) [55], and FGF receptor-4
(FGFR-4) [56–58]; these are located on chromo-
somes 8p, l0q, 4p, and 5q, respectively [59–62].
Once secreted, acidic and basic FGF exert their
effects by binding to FGFRs 1–4. These proteins are
receptor tyrosine kinases. FGF molecules – perhaps
bound as dimers [63] – bind to FGFRs to induce
receptor dimerization, which is required to initiate
the protein tyrosine kinase activity and subsequent
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Table 1. Angiogenic growth factors and receptors: size
and genetic location

Factor Molecular weight (kDa) Chromosome

FGF-l 1824 5q24

FGF-2 18, 22, 22.5, 2450,51 4q46,47

FGF-4 1827 11q28

FGFR-1 15053 8p59

FGFR-2 13554 lOq 60

FGFR-3 12555 4p 61

FGFR-4 95, 11056 5q62

PDGF-A 1597 7p98,99,100

PDGF-B 1597 22q9,103

PDGFR-α 170109 4q109

PDGFR-β 180107,108,109 5q107,108,109

TGF-α 5–20137 2p143

EGFR 170-180132 7p148

TGF-β l 12–15184,190 19q187

TGF-β2 12–15182,188 1q188

TGF-β3 12–15182,188 14q189

TβR-I 55191 9q195

TβR-II 75191 3p195

TβR-III 250–350193 1p197

Endoglin 68194 9q198

trans-autophosphorylation events and activation
(Figure 1).

It has been shown that heparan sulfate proteogly-
cans (HSPGs) such as heparin may increase the binding
affinity of FGFs to their receptors [64]. Proteins such
as phospholipase-Cγ (PLC-γ ) and Ras GTPase Acti-
vating Protein (GAP), for instance, then bind the
phosphorylated regions, engaging the receptor tyrosine
kinase signaling cassette en route to mediating gene
transcription events.

Expression in gliomas and roles in angiogenesis

FGF-l and FGF-2, two of the first angiogenic fac-
tors isolated [65], have been implicated in glioma
angiogenesis. Earlyin vitro studies demonstrated high
levels of expression of FGF-2 mRNA and protein in
U87MG glioma cell lines [66]. Robust expression of
FGF-1 in glioma as compared to normal brain has
also been shown; an early study showing FGF-1 over-
expression in gliomas by Northern blot analysis and
in situ hybridization reported that 93% of tumors
studied showed elevated FGF-1 mRNA expression as
compared to nonmalignant control brain tissue [67].
FGF-2 overexpression has been linked to increased
endothelial activity, as well. Strong expression of
FGF-2 has been reported in the perivascular space of

more malignant tumors as compared to normal brain
[67]. Peritumoral endothelial cell FGF-2 immunore-
activity has also been shown to correlate with tumor
grade; capillaries in glioblastoma and anaplastic astro-
cytoma are immunoreactive for FGF-2, in contrast
to those of low-grade astrocytomas [68]. Higher lev-
els of FGF receptors have also been demonstrated in
gliomas; indeed, it has been suggested that glioma
grade is marked by the differential expression of FGFR
molecules, with the malignant progression from glial
cell to glioblastoma accompanied by diminishing levels
of FGFR-2 and increasing levels of FGFR-1 [69,70].
These results suggest that alterations in FGFR sig-
nal transduction pathways may play a critical role in
the malignant progression of astrocytic tumors. While
these changes have been reported in glioma cells, there
is conflicting evidence regarding the status of FGFR
expression on intratumoral endothelial cells [69–71].

It is thought that FGF-1 and FGF-2 may par-
ticipate in angiogenesis in two primary ways: by
modulating endothelial cell activity and by regulat-
ing VEGF expression in tumor cells. Both factors
are well-established mitogens and chemoattractants for
endothelial cells [65,72,73]. In order to invade extra-
cellular matrix to vascularize new tissues, endothelial
cells must enhance their expression of molecules that
activate key proteases such as plasmin [74–76]. One of
such molecules, urokinase-type plasminogen activator
(uPA), acts to convert the inactive zymogen plasmino-
gen to the active proteolytic enzyme plasmin [77].
Plasmin, in turn, is able to degrade multiple extracel-
lular matrix (ECM) components including fibronectin
and laminin, permitting endothelial cell migration into
new tissue space [78]. FGF-2 has been shown to upreg-
ulate uPA and collagenase expression on endothelial
cells [79] and has also been shown to induce expres-
sion of the receptor for uPA [80], thus modulating
endothelial cell migration in a feed-forward fashion.
Hence one way in which FGF-2 may participate in
angiogenesis is by mediating the proteolytic digestion
of ECM by invading endothelial cells. Furthermore,
FGF-2 is chemotactic for endothelial cells [81] and
has been shown to induce capillary endothelial cells
to migrate into three-dimensional collagen matrices to
form capillary-like tubes [82].

A second way in which FGF-2 may participate in
angiogenesis is by inducing expression of VEGF, an
endothelial cell mitogen [83–86] which has been shown
to be a potent angiogenesis factor in human gliomas
in vivo[86]. FGF-2 has been shown to stimulate VEGF
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Figure 1. Growth factor-mediated angiogenesis in gliomas. In this scheme, tumor cells secrete indicated growth factors represented by
dimerized triangles which bind their respective receptors either on the same or adjacent tumor cells or on surrounding tumor endothelial
cells. Growth factor receptors are marked by asterisks and are shown in greater detail in the inset. Growth factor binding may lead to cell
proliferation, upregulation of key proteases, and/or initiation of signaling leading to VEGF transcription in tumor cells or endothelial cells.
VEGF secreted from tumor cells and/or endothelial cells after growth factor-mediated signaling may then bind to one of its receptors,
flt-1 or KDR/flk-1. Neuropilins 1 and 2 were recently shown to be the newest members of the VEGF receptor family and may be involved
in glioma angiogenesis.Inset:Details of signaling by growth factor receptors (marked by asterisks in figure). Proposed growth factor-
mediated signaling pathways leading to VEGF transcription in tumor cells or endothelial cells. EGF, TGF-α, the FGFs, and PDGF
signal through receptor tyrosine kinases (RTKS); the ligands, which are dimerized, bind to tyrosine transreceptor subunits and induce
dimerization. This in turn leads totrans-autophosphorylation by the intracellular receptor tyrosine domains, and subsequent signaling
through molecules such as Raf/Ras and others, represented by ‘RTK cassette’ above. The details of TGF-β signaling differ. First, TGF-β
– again binding as a dimer – binds to only the RII subunit, and binding induces recruitment of the RI subunit andtrans-phosphorylation
of RI by the constitutively phosphorylated RII. Downstream signaling is initiated by activated RI and is mediated by Smad proteins.

secretion in a dose-dependent fashion using U-105MG
and D-54MG glioma cell lines [87]. Thus FGF-2
secreted by tumor cells may induce angiogenesis in a
paracrine fashion, acting on endothelial cells directly
as well as stimulating tumor cells in an autocrine and
paracrine fashion to synthesize VEGF.

Studies such as these have established that FGF-1
and FGF-2 may modulate endothelial cell activity
directly and indirectly. While high levels of these
growth factors have been detected in gliomas, func-
tional roles for these proteins in glioma angiogenesis
have also been investigated directly. Direct evidence
for the role of FGF-2 in glioma angiogenesis is given
by in vivo studies in which intracranially implanted
U87MG tumors showed a significantly lower degree of
neovascularization after treatment with an anti-FGF-2
antibody as compared to untreated tumors [88]. Addi-

tionally, endothelial tube formation stimulated by the
presence of glioma cells in a three-dimensional colla-
gen was markedly inhibited after incubation with an
anti-FGF-2 antibody [89].

In addition to reports establishing both the presence
and functional involvement of FGFs in glioma angio-
genesis, studies have also correlated FGF expression
with clinical tumor progression and patient prognosis.
Increased neovascularization accompanies the mitotic
and pleiomorphic cellular changes in the malignant
progression of gliomas. Immunohistochemical studies
on primary glioma specimens showing that FGF-2 is
expressed in human gliomas also showed that FGF-2
levels are increased in high grade as compared to
low-grade gliomas [68]. Additional studies have also
reported increasing FGF-2 levels with glioma grade,
noting that FGF-2 expression correlates with glioma
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vascularity [90]. Moreover, Liet al. detected FGF-2
in the CSF of 62% of patients with brain tumors
(16/26), while no FGF-2 was detected in controls [91].
Endothelial cells from CSF that contained FGF-2 were
more proliferative when compared with controls; the
degree of endothelial cell stimulation correlated with
FGF-2 levels; and the level of FGF-2 correlated with
microvessel density. Most strikingly, patients with CSF
containing FGF-2 recurred earlier, with earlier tumor
recurrence correlating with increased microvessel den-
sity. Interestingly, while a number of different types of
brain tumors were included in this study, the highest
level of FGF-2 was detected in a pilocytic astrocytoma.
Studies from our laboratory have supported the impor-
tance of microvessel density as a prognostic indicator of
postoperative survival of patients with astroglial brain
tumors [92].

Research to date has focused on the involvement of
FGF-1 and FGF-2. A recent study provided evidence
that FGF-4 may also participate in glioma angiogenesis
[93]. In 18 glioblastomas, 17 anaplastic astrocytomas,
and 19 low-grade gliomas, Western blot and immuno-
histochemical analysis demonstrated the presence of
FGF-4 and its related receptors, FGFRs-1, 2, and
4, in tumor and tumor-associated endothelial cells.
The expression of these proteins was undetectable in
control non-neoplastic tissue. Moreover, the expression
of FGF-4 and its receptors correlated with histological
grade, tumor type, microvessel count, and cell den-
sity. These observations were corroborated byin vitro
studies in which U87MG, U373MG, and U118MG
glioma cell lines were shown to secrete FGF-4. Addi-
tional studies showed that FGF-4 could regulate VEGF
expression and the formation of new blood vessels.
These data suggest that other FGF family mem-
bers such as FGF-4, in addition to FGF-1/2, may be
important in blood vessel growth in gliomas.

PDGF

Ligand and receptor

Platelet-derived growth factor (PDGF) has also been
implicated in glioma angiogenesis. PDGF was initially
discovered as a mitogen for fibroblasts contained in
human serum and localized in the alpha granules of
platelets [94,95]. While initially described as a platelet
alpha-granule release product, subsequent studies have
shown that PDGF is produced by a variety of cell
types and that among its many targets of action are

capillary endothelial cells, vascular smooth muscle
cells, osteoblasts, glia, and neurons [96–98]. PDGF has
pleiotropic effects and has roles in embryonic devel-
opment, CNS development, the vascular system, tissue
homeostasis, and wound healing. An angiogenic role
has also been demonstrated, albeit weaker than the
angiogenic effects of VEGF and the FGFs [98].

PDGF is a 30 kDa protein consisting of disulfide-
bonded dimers of A and/or B chains. The A and
B subunits are approximately 100 amino acids in
length and share a 60% sequence homology; the
isoforms are functionally active when dimerized as
either PDGF-AA, PDGF-AB, or PDGF-BB [97,99].
PDGF-A is encoded by a gene on chromosome 7p
[100–102]; PDGF-B, the cellular homolog of the retro-
viral oncogene v-sis carried by the Simian Sarcoma
Virus (SSV) [103,104], is encoded by the c-sis/PDGF-2
gene on chromosome 22q [101,105].

The PDGF receptors are members of the pro-
tein tyrosine kinase family of receptors [106] and as
such are activated by ligand-induced dimerization of
receptor subunits. Two receptor subunits have been
described: PDGF receptor-α (PDGFR-α) and PDGF
receptor-β (PDGFR-β). PDGFR-α, a 170 kDa pro-
tein, is encoded on chromosome 4q, while PDGFR-β,
a 180 kDa protein, is encoded on chromosome 5q
[107–109]. Ligand binding and subsequent dimer-
ization leads to juxtaposition of the two tyrosine
kinase domains andtrans-autophosphorylation, and
to the activation of signal transduction pathways and
downstream gene transcription events (Figure 1).

PDGF dimer combinations bind to dimeric com-
binations of PDGF receptor subunits. PDGF-A binds
only to PDGFR-α, whereas PDGF-B binds to theβ
receptor with higher affinity but can bind both sub-
types. Consequently, PDGF-AA can only activate the
αα receptor complex; PDGF-AB can activateαα orαβ;
and PDGF-BB can activateαα, αβ andββ [110–112].
PDGF-BB is able to activate all three receptor com-
plexes and has been shown to be the most mitogenic of
the PDGF dimer combinations [113–117].

Expression in gliomas and roles in angiogenesis

Human astrocytomas express high levels of both the
PDGF ligand and corresponding receptor subtypes.
In situ hybridization and immunocytochemistry stud-
ies have demonstrated that PDGF-A is expressed in
low-grade and anaplastic astrocytomas as well as
in glioblastomas. and that expression increases with
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tumor grade [118]. PDGFR-α was also expressed
at higher levels in gliomas as compared to control
gliosis cases. PDGF-B, while still expressed, was
found at lower levels than PDGF-A in cell-rich areas;
PDGFR-β was not detected in glioma cells. Later
studies have corroborated these results, and studies in
oligodendrogliomas have demonstrated similar ligand
and receptor expression [123,125]. The overexpression
of PDGFR-α in all tumor grades and the increasing
expression of PDGF-A and PDGF-B with tumor grade
are consistent with the concept that the establishment of
a functional autocrine/paracrine loop may be important
in glioma pathogenesis [118,120–124]. Interestingly,
robust expression of both PDGF-B and PDGFR-β

was reported in hyperplastic tumor endothelial cells
in glioblastoma [119]. Furtherin situ hybridization
and immunocytochemistry studies in normal brain,
low-grade astrocytoma, anaplastic oligo-astrocytoma,
and glioblastoma have demonstrated that PDGFR-β

mRNA is expressed in the vasculature of glioma tissue,
most notably in areas of endothelial cell prolifera-
tion in glioblastoma tissue [126]. No mRNA message
was detected in normal brain and expression in tumors
appeared to be confined to tumor endothelial cells. The
detection of increased levels of PDGF-B and PDGFR-β

on high-grade astrocytoma endothelial cells suggests
a role for PDGF in glioma angiogenesis. Subsequent
in vitro studies have taken steps towards addressing the
biological significance of these observations. PDGF
was shown to be a chemotactic factor in rat brain cap-
illary endothelial cells, with PDGF-BB having a more
potent effect than PDGF-AA [127]. Earlier studies
by Westermark and co-investigators provide a possi-
ble molecular basis for this effect by showing that
PDGFR-β is able to mediate the actin reorganization
necessary for a chemotactic motility response [128].

Most recently, the observed overexpression of
PDGFR-β on tumor endothelial cells was studied by
transfecting aortic endothelial cells with wild-type
PDGFR-β. Incubation with PDGF-B led to increased
transcription and secretion of VEGF by endothelial
cells expressing theβ receptor. Furthermore, it was
shown that VEGF regulation by PDGF was medi-
ated by phosphoinositol-3 kinase (PI-3 kinase) as
PI-3 kinase-specific inhibitors abrogated the PDGF-
induced VEGF expression [129]. Interestingly, Tsai
et al.demonstrated that physiological concentrations of
PDGF-BB and not PDGF-AA can also induce VEGF
secretion in a variety of human glioma cell lines [87].
Moreover, it was demonstrated that activation of con-

vergent signaling pathways of EGF, PDGF-BB, and
FGF-2 led to increased VEGF secretion.

The emerging picture is that inappropriate expres-
sion of PDGF by astrocytes and the upregulation of
the PDGF receptor on the surrounding endothelial cells
may represent an important step in the development,
proliferation and maintenance of malignant astrocy-
tomas [126,130,131]. An increase in PDGF activity
in vivo may stimulate VEGF expression in endothe-
lial cells and in tumor cells, establishing both paracrine
and autocrine loops for endothelial cell activation and
proliferation. PDGF-induced VEGF expression may
contribute not only to expansion of an established
tumor but also to the regulation of the angiogenic
switch for initial tumor development as induction of
PDGFR-β on endothelial cells may occur in early
stages of glioma formation.

EGF/TGF-α/EGFR

Ligand and receptor

EGF, TGF-α, and their receptor, epidermal growth fac-
tor receptor (EGFR), are thought to be important in the
mediation of proliferative and transforming response
in a variety of cancers via autocrine or paracrine mech-
anisms [132–134]. A considerable body of work has
demonstrated its importance in glioma transformation.
In these tumors, overexpression of EGFR is a late event,
and may be one of the last molecular event to occur
in the pathogenesis of gliomas [135]. Ligands which
bind EGFR include EGF, TGF-α, heparin-binding epi-
dermal growth factor-like growth factor (HB-EGF),
amphiregulin, and epiregulin [136–140]. Of these, EGF
and TGF-α have been implicated in glioma angiogen-
esis. EGF – one of the earliest peptide growth factors
purified – is a 53-amino acid protein of molecular
weight 6 kDa whose gene has been mapped to chromo-
some 4q [132,141,142]; it is involved in the regulation
of cell proliferation and differentiation in a number of
physiological systems. TGF-α, which in active form
is 50 amino acids long and is 5–20 kDa depending
on extent of glycosylation, maps to chromosome 2p
[137,143]. First found in the medium of retrovirally
transformed fibroblasts [133,144], TGF-α shares 42%
homology with EGF [145] and is widely expressed in
developing embryos and in a number of normal adult
tissues. It is thought to have roles in wound healing
and homeostatsis in number of tissues, and to serve as
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a broad regulator of normal growth and development
[146]. It is structurally unrelated to TGF-β and binds
to an entirely different set of receptors.

EGF and TGF-α both exert their effects through
EGFR, the cellular homolog of the viral oncogene
erbB from the avian erythroblastosis virus [147]. EGFR
(ErbB1), encoded on chromosome 7p [148], is a
receptor tyrosine kinase with a molecular weight of
170–180 kDa [132,137,145]. A classic receptor tyro-
sine kinase, two molecules of EGFR are cross-linked
and brought together by dimerized ligand binding,
which can occur among two EGFR molecules or
among other members of the EGF receptor protein
tyrosine kinase family, such as ErbB2, ErbB3, ErbB4
[149–151]. It has recently been demonstrated that EGF
most likely expedites receptor subunit dimerization by
itself binding as a dimer, and the same may be true
for TGF-α [152]. Receptor dimerization inducestrans-
autophosphorylation and recruitment and activation of
various signal transduction pathways (Figure 1); the
Ras pathway has been implicated in EGFR-activated
glioma pathogenesis [153].

A number of altered forms of EGFR – the result
of gene rearrangements, alternative splicing, deletions,
and/or translational alterations – have been detected in
human glioma tissue and cell lines. The most common
mutant form, termed p140EGFR, EGFRvIII, or1EGFR,
lacks a significant portion of the extracellular bind-
ing site of the wild-type protein and is constitutively
phosphorylated and hence activated [154,155]. This
truncated mutant has been shown to confer a consider-
able growth advantage when stably expressedin vivo
when stably expressed in U87MG astrocytoma cells in
nude mice [156]. Other mutant EGFR molecules that
have been detected in gliomas lack cytoplasmic regions
necessary for receptor downregulation [157,158].

Expression in gliomas and roles in angiogenesis

EGFR is rarely present in normal glial cells but is
expressed in human gliomas, certain neurons, and in
reactive astrocytes [159]. Studies have demonstrated
the expression of EGFR in gliomas in the cell mem-
brane, cytoplasm, and nucleus of positive cells by EGF
binding and by immunohistochemistry [160,161].

Increased levels of EGFR in glioma are due to ampli-
fication of the erbB-1 gene, the first major molecular
genetic alteration identified in human gliomas [162].
Amplification has been detected in 3% of low-grade

astrocytomas, 7% of anaplastics, 40%–50% glioblas-
tomas [160, 162–164], and in a number of glioma
cell lines. Moreover, in a large number of glioblas-
tomas with EGFR gene amplification, the EGFR gene
undergoes rearrangements and/or deletions; 50% of
glioblastomas in which EGFR amplification occurred
expressed EGFR in its preponderant mutant form,
EGFRvIII [154,158]. In addition to amplification of
mutant EGFR, wild-type EGFR, as well as EGF and
TGF-α mRNA, appear to be upregulated in gliomas.
Hence not only is the mutant receptor able to induce
mitogenesis and activation, but the wild-type ligand and
receptor system is also induced [165]. The overexpres-
sion of EGFR has been inversely correlated with the
length of survival for patients with malignant glioma
[166], but others have not shown a significant corre-
lation [167,183]. Interestingly, Bello has shown that
urinary EGF levels correlated with tumor anaplasia,
and that immunohistochemistry on tumor specimen
correlated with urinary EGF levels [168]. Addition-
ally, recent studies have reported expression of other
members of the EGF receptor family members such as
erbB-2 in gliomas [145,169].

TGF-α is secreted by a number solid tumors [170],
including gliomas; its expression has been reported
to correlate not only with tumor grade but also with
EGFR and Ki-67 expression [171–173]. Like EGFR,
it has been suggested that increased TGF-α levels are
due to gene amplification [174], but this has not been
supported by subsequent studies [175]. TGF-α is a
potent mitogen and its functional effects on glioma
cell proliferation were demonstrated by growth inhibi-
tion of U251 cells by antisense TGF-α [176]. Direct
consequences of increased expression in tumor cells
of a TGF-α/EGFR autocrine or paracrine loop include
increased cell proliferation and survival. Increased
EGFR activity, whether through mutation or by TGF-α

binding, increases cell proliferation and survival and
has been shown to confer a growth advantage on cells
in vitro [177].

The TGF-α/EGFR pathway is also purported to
play a role in glioma angiogenesis. Tumor endothe-
lial cells are immunoreactive for TGF-α and EGFR,
and both TGF-α and EGF are potent mitogensin
vitro for endothelial cells. Both molecules have been
shown to be angiogenicin vivo, with TGF-α having
a more profound effect [178]. In addition to its mito-
genic effects on endothelial cells, EGFR in glioma
may mediate its angiogenic effects by regulating VEGF
expression. Engagement of the EGFR by EGF and
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TGF-α has been shown to stimulate VEGF expression
by glioma cellsin vitro [87,180,181]; this secretion was
blocked by incubation with anti-EGFR [182]. More-
over, Feldkamp and investigators recently showed that
the EGFRvIII – the truncated and constitutively acti-
vated EGFR – is able to increase VEGF expression in
glioma cells [183]. Hence as in the other growth fac-
tor systems discussed, the TGF-α/EGFR system may
mediate glioma angiogenesis through both direct and
indirect effects on endothelial cells.

TGF-β

Ligand and receptor

The TGF-β proteins are members of a large group
of closely related growth factors including Bone
Morphogenic Proteins (BMPs), Mullerian Inhibiting
Substance (MIS), inhibin, and the activins [184,185].
The TGF-β proteins affect cell fate by regulating
proliferation, differentiation, motility, adhesion, and
apoptosis [186], but are most notable for inhibiting
proliferation in a variety of systems.

At least three genes encode TGF-β precursors in
humans: TGF-β l, on chromosome 19q; TGF-β2, on lq;
and TGF-β3, on 14q [187,188,189]. The correspond-
ing TGF proteins share 64%–82% sequence homology
and interestingly have nearly identical effects in some
biological systems and opposite effects in others [190].
Like the other growth factors discussed in this review,
TGF-β proteins act functionally as disulfide-linked
dimers, each subunit of which is about 112 amino
acids in length and 12–15 kDa in molecular weight
[184,190]. The proteins are initially inactive and are
activated by enzymatic cleavage of the latent form.

The TGF-β proteins bind with high affinity to
a set of receptors distinct from others discussed in
this review. TGF-β receptors I and II (TβR-I/II) are
transmembrane serine/threonine receptor kinases of
55 and 75 kDa [190,191], respectively, which together
mediate the intracellular signals induced by TGF-β

binding. The current view is that these subunits work
in tandem, with the TGF-β dimer first binding to
the constitutively phosphorylated RII subunit. The
RI subunit is then recruited andtrans-phosphorylated
by RII, subsequently transmitting the signal to the
cell by phosphorylation of Smad proteins which
may operate independently or in conjunction with
other signaling pathways to produce their responses

(Figure 1) [186,192]. TGF-β is known to bind other
cell surface proteins such as betaglycan (TβR-III),
which is expressed on a variety of cell types includ-
ing microvascular endothelial cells [185,193], and
endoglin (CD105), which is expressed primarily on
endothelial cells [194]. These have no apparent role in
directly transducing cellular signals but may present
TGF-β proteins to TβR-II [192]. TβR-I has been
mapped to chromosome 9q [195]; TβR-II, to 3p [196];
betaglycan, to 1p [197]; and endoglin, to 9q [198].

Expression in gliomas and roles in angiogenesis

To date, immunohistochemical studies have revealed
that the TGF-β proteins, as well as their func-
tional signaling receptors TβR-I/RII, are expressed
in glioblastoma and anaplastic astrocytoma, but are
barely detectable, if at all, in low-grade gliomas, gliosis,
and normal brain [199–202]. In these studies, lev-
els of TGF-β1 and of TβR-I/II were high in higher
grade glioma tissue, while low-grade astrocytomas
and gliosis cases had moderate expression of TβR-I
and weak immunopositivity for TGF-β proteins and
TβR-II [199,201]. TGF-βII/III were also upregulated,
but not significantly. Interestingly, immunohistochem-
ical studies of TGF-β and TβR have demonstrated
that areas of neovascularization in gliomas are strongly
immunoreactive [201,203]. In normal endothelial cells,
TGF-β is expressed primarily as an inactive precursor;
TβR-I/II, betaglycan, and endoglin are also expressed,
though TβR-I/II have been most easily detectedin vitro
[193,204,205]. Moreover, increasing levels of TGF-β

expression has been correlated inversely with survival
among malignant glioma patients [206].

The functional significance of increased TGF-β

activity in glioma has also been investigated. Despite its
central physiologic role as a growth inhibitor, TGF-β

has been shown to be mitogenic for a number of glioma
cell lines [201,206,207]. The switch from TGF-β ’s
inhibitory to proliferative effects may be explained by a
selective resistance to TGF-β binding to TβR through
mutation of the receptor, or to a downregulation of the
receptors [202]. However, while TβR-I/II are consid-
erably downregulated in other extracranial neoplasms
such as colorectal cancer [208], studies to date indicate
that receptor expression is upregulated in glioma, sug-
gesting that TGF-β ’s switch from a growth inhibitor to
a mitogen may be due to other growth factor mediators
such as PDGF which are upregulated by TGF-β, or to a
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dysregulation in the TGF-β signaling pathway. Indeed,
TGF-β proteins have been shown to induce expres-
sion of the proto-oncogene c-sis (PDGF-B), PDGFR-β,
and PDGF-A in glioma cells [209,210], suggesting that
TGF-β ’s conversion from inhibitor to mitogen may be
due in part to modulation of expression of other growth
factor systems.

TGF-β ’s pleiotropic effects include roles in angio-
genesis, but the exact nature of its participation in
this process is unclear. TGF-β has been described as
angiogenic or anti-angiogenic, depending on the nature
of the assay.In vivo disc angiogenesis studies sug-
gest a role in angiogenesis [211], butin vitro studies
on endothelial cells have demonstrated an inhibitory
effect on endothelial cell proliferation [212–214], as
well as decreased expression of molecules necessary
for endothelial cell migration such as plasminogen
activators and a correspondent increase in Plasmino-
gen Activator Inhibitors (PAIs) [215,216]. TGF-β has
also been shown to increase synthesis and secretion
of specific ECM proteins including fibronectin and
collagen. These effects, coupled with its induction of
endothelial cell quiescence, have led some to specu-
late that TGF-β takes part in the resolution phase of
angiogenesis in which endothelial cells cease prolifer-
ating and functional basement membranes and ECM
complexes are laid down [215,216].

TGF-β may also participate in angiogenesis in
glioma by influencing the activity and/or expression of
proteins in other growth factor systems. When added
at low concentrations to endothelial cells in a three-
dimensional collagen gel model, TGF-β1 potentiates
angiogenic effects of VEGF and bFGF [217] such as
cord formationin vitro. TGF-β1 has also been shown to
induce PDGF-A and -B chain synthesis in endothelial
cells [218,219] and to increase PDGFR-β expression
in vascular smooth muscle cells [220]. In addition to
possible regulation of the FGF and PDGF systems,
TGF-β has also been shown to induce EGFR [221].
Interestingly, Koochekpour and co-investigators have
demonstrated that TGF-β isoforms differentially stim-
ulate VEGF production in glioma cells [222]. TGF-β1
has also been observed to upregulate expression of
VEGF in bone angiogenesis and breast cancer cells
[223,224], further suggesting that TGF-β may act as in
indirect angiogenic factor.

Other evidence suggesting a role for the TGF-β

system in glioma angiogenesis includes the high
immunopositivity for endoglin in childhood gliomas
[225]. Endoglin, a TGF-β binding protein, is expressed

primarily on endothelial cells and appears to be essen-
tial for angiogenesis, recently demonstrated by the
defective vascular development in mice lacking the
gene [226]. Consistent with a possible role in angiogen-
esis, endoglin binds the TGF-β proteins TGF-β1 and
TGF-β3 that have been shown to be most angiogenic
in other studies [227].

Thus, studies to date suggest that TGF-β proteins
may participate in glioma angiogenesis in three main
ways. First, TGF-β may mediate its effects through
the regulation of expression and activity of other
growth factors and/or growth factor receptors such as
FGF-2, PDGF, PDGFR, and EGFR. Secondly, like
other growth factors discussed in this review, it may
stimulate secretion of VEGF from the same or sur-
rounding tumor cells in an autocrine or paracrine
fashion. Third, it may interact directly with endothe-
lial cells in two ways: by acting as a mitogen in
advanced glioma malignancy despite its physiologic
role as an inhibitor of proliferation [200f] or by par-
ticipating in the resolution phase of angiogenesis in
gliomas by inducing endothelial cell quiescence and by
increasing levels of secretion of basement membrane
proteins.

Conclusion

We have reviewed the potential involvement of FGFs,
PDGF, EGF, and TGF-α/β in glioma angiogenesis. The
immunohistochemical studies, mRNA expression, and
in vitro andin vivo studies discussed herein suggest a
pattern of involvement of these growth factors in the
progression of malignant gliomas in which increased
levels of these tumor-derived growth factors and/or
their cognate receptors mediate their angiogenic effects
in three primary ways: by direct endothelial action
and tube formation; by indirect endothelial stimula-
tion through increasing VEGF or other growth factor
expression from tumor or endothelial cells, or both; and
by upregulation of key proteases on endothelial cells
to remodel surrounding ECM, permitting endothelial
cell migration. Acting as such, glioma-derived angio-
genic factors such as FGFs, PDGF, EGF, and TGF-α/β
may bridge the interdependent processes of tumor cell
and endothelial cell proliferation in gliomas. Taken
together, the process of glioma angiogenesis appears
to depend on an array of growth factors. While VEGF
is perhaps the most critical to the process of neovas-
cularization in these tumors and likely provides the
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strongest therapeutic target to limiting this process, an
understanding of the roles of supporting growth factors
such as FGFs, PDGF, EGF, and TGFs may also prove
beneficial.
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